.NET MCP 示例
服务器端示例
基础服务器
以下是一个基础的 MCP 服务器示例,它使用标准输入输出(stdio)作为传输方式,并实现了一个简单的回显工具:
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using ModelContextProtocol.Server;
using System.ComponentModel;
namespace BasicMcpServer
{
public class Program
{
public static async Task Main(string[] args)
{
var builder = Host.CreateApplicationBuilder(args);
// 配置日志输出到标准错误
builder.Logging.AddConsole(consoleLogOptions =>
{
consoleLogOptions.LogToStandardErrorThreshold = LogLevel.Trace;
});
// 配置 MCP 服务器
builder.Services
.AddMcpServer()
.WithStdioServerTransport()
.WithToolsFromAssembly();
await builder.Build().RunAsync();
}
}
[McpServerToolType]
public static class BasicTools
{
[McpServerTool, Description("Echoes the message back to the client.")]
public static string Echo(string message) => $"You said: {message}";
[McpServerTool, Description("Adds two numbers together.")]
public static double Add(
[Description("First number to add")] double a,
[Description("Second number to add")] double b) => a + b;
[McpServerTool, Description("Gets the current date and time.")]
public static string GetDateTime() => DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss");
}
}
这个示例展示了如何创建一个基本的 MCP 服务器,它包含三个简单的工具:回显消息、加法计算和获取当前日期时间。
文件操作工具
以下是一个实现文件操作功能的 MCP 工具示例:
[McpServerToolType]
public static class FileTools
{
[McpServerTool, Description("Reads the content of a text file.")]
public static async Task ReadTextFile(
[Description("Path to the file to read")] string filePath,
CancellationToken cancellationToken)
{
if (!File.Exists(filePath))
{
throw new FileNotFoundException($"File not found: {filePath}");
}
return await File.ReadAllTextAsync(filePath, cancellationToken);
}
[McpServerTool, Description("Writes text content to a file.")]
public static async Task WriteTextFile(
[Description("Path to the file to write")] string filePath,
[Description("Content to write to the file")] string content,
[Description("Whether to append to the file instead of overwriting")] bool append = false,
CancellationToken cancellationToken = default)
{
try
{
if (append)
{
await File.AppendAllTextAsync(filePath, content, cancellationToken);
}
else
{
await File.WriteAllTextAsync(filePath, content, cancellationToken);
}
return $"Successfully wrote {content.Length} characters to {filePath}";
}
catch (Exception ex)
{
return $"Error writing to file: {ex.Message}";
}
}
[McpServerTool, Description("Lists files in a directory.")]
public static string[] ListFiles(
[Description("Directory path to list files from")] string directoryPath,
[Description("File pattern to match (e.g., *.txt)")] string pattern = "*.*")
{
if (!Directory.Exists(directoryPath))
{
throw new DirectoryNotFoundException($"Directory not found: {directoryPath}");
}
return Directory.GetFiles(directoryPath, pattern)
.Select(Path.GetFileName)
.ToArray();
}
}
这个示例实现了三个文件操作工具:读取文本文件、写入文本文件和列出目录中的文件。这些工具可以帮助 AI 模型访问和操作本地文件系统。
Web 请求工具
以下是一个实现 Web 请求功能的 MCP 工具示例:
[McpServerToolType]
public static class WebTools
{
[McpServerTool, Description("Fetches content from a URL.")]
public static async Task FetchUrl(
HttpClient httpClient,
[Description("URL to fetch content from")] string url,
CancellationToken cancellationToken)
{
try
{
var response = await httpClient.GetAsync(url, cancellationToken);
response.EnsureSuccessStatusCode();
return await response.Content.ReadAsStringAsync(cancellationToken);
}
catch (Exception ex)
{
return $"Error fetching URL: {ex.Message}";
}
}
[McpServerTool, Description("Performs a web search and returns results.")]
public static async Task WebSearch(
HttpClient httpClient,
[Description("Search query")] string query,
[Description("Maximum number of results to return")] int maxResults = 5,
CancellationToken cancellationToken = default)
{
// 注意:这是一个示例实现,实际应用中应该使用真实的搜索 API
var encodedQuery = Uri.EscapeDataString(query);
var url = $"https://api.example.com/search?q={encodedQuery}&limit={maxResults}";
try
{
var response = await httpClient.GetAsync(url, cancellationToken);
response.EnsureSuccessStatusCode();
var content = await response.Content.ReadAsStringAsync(cancellationToken);
// 解析搜索结果(示例)
return $"Search results for '{query}':\n{content}";
}
catch (Exception ex)
{
return $"Error performing web search: {ex.Message}";
}
}
[McpServerTool, Description("Posts data to a URL and returns the response.")]
public static async Task PostToUrl(
HttpClient httpClient,
[Description("URL to post data to")] string url,
[Description("JSON data to post")] string jsonData,
CancellationToken cancellationToken)
{
try
{
var content = new StringContent(jsonData, System.Text.Encoding.UTF8, "application/json");
var response = await httpClient.PostAsync(url, content, cancellationToken);
response.EnsureSuccessStatusCode();
return await response.Content.ReadAsStringAsync(cancellationToken);
}
catch (Exception ex)
{
return $"Error posting to URL: {ex.Message}";
}
}
}
这个示例实现了三个 Web 请求工具:获取 URL 内容、执行 Web 搜索和向 URL 发送 POST 请求。这些工具可以帮助 AI 模型访问互联网上的信息。
注册 HttpClient:
要使用上述 Web 工具,需要在服务配置中注册 HttpClient:
builder.Services.AddHttpClient();
数据库工具
以下是一个实现数据库操作功能的 MCP 工具示例(使用 Entity Framework Core):
// 数据库上下文
public class AppDbContext : DbContext
{
public AppDbContext(DbContextOptions options) : base(options) { }
public DbSet Products { get; set; }
}
// 产品实体
public class Product
{
public int Id { get; set; }
public string Name { get; set; }
public decimal Price { get; set; }
public int Stock { get; set; }
}
// 数据库工具
[McpServerToolType]
public class DatabaseTools
{
private readonly AppDbContext _dbContext;
public DatabaseTools(AppDbContext dbContext)
{
_dbContext = dbContext;
}
[McpServerTool, Description("Gets a list of products.")]
public async Task GetProducts(
[Description("Maximum number of products to return")] int limit = 10,
CancellationToken cancellationToken = default)
{
var products = await _dbContext.Products
.Take(limit)
.ToListAsync(cancellationToken);
return JsonSerializer.Serialize(products, new JsonSerializerOptions
{
WriteIndented = true
});
}
[McpServerTool, Description("Searches for products by name.")]
public async Task SearchProducts(
[Description("Product name to search for")] string name,
CancellationToken cancellationToken = default)
{
var products = await _dbContext.Products
.Where(p => p.Name.Contains(name))
.ToListAsync(cancellationToken);
return JsonSerializer.Serialize(products, new JsonSerializerOptions
{
WriteIndented = true
});
}
[McpServerTool, Description("Adds a new product.")]
public async Task AddProduct(
[Description("Product name")] string name,
[Description("Product price")] decimal price,
[Description("Product stock")] int stock,
CancellationToken cancellationToken = default)
{
var product = new Product
{
Name = name,
Price = price,
Stock = stock
};
_dbContext.Products.Add(product);
await _dbContext.SaveChangesAsync(cancellationToken);
return $"Product added successfully with ID: {product.Id}";
}
}
这个示例实现了三个数据库操作工具:获取产品列表、搜索产品和添加新产品。这些工具可以帮助 AI 模型访问和操作数据库。
注册数据库上下文:
要使用上述数据库工具,需要在服务配置中注册数据库上下文:
builder.Services.AddDbContext(options =>
options.UseSqlite("Data Source=app.db"));
// 注册数据库工具
builder.Services.AddTransient();
客户端示例
基础客户端
以下是一个基础的 MCP 客户端示例,它连接到 MCP 服务器并列出可用的工具:
using ModelContextProtocol.Client;
using ModelContextProtocol.Protocol.Transport;
namespace BasicMcpClient
{
public class Program
{
public static async Task Main(string[] args)
{
// 解析命令行参数
var (command, arguments) = GetCommandAndArguments(args);
// 创建 MCP 客户端
await using var mcpClient = await McpClientFactory.CreateAsync(new()
{
Id = "demo-server",
Name = "Demo Server",
TransportType = TransportTypes.StdIo,
TransportOptions = new()
{
["command"] = command,
["arguments"] = arguments,
}
});
// 列出可用工具
var tools = await mcpClient.ListToolsAsync();
Console.WriteLine("Available tools:");
foreach (var tool in tools)
{
Console.WriteLine($"- {tool.Name}: {tool.Description}");
if (tool.Parameters?.Any() == true)
{
Console.WriteLine(" Parameters:");
foreach (var param in tool.Parameters)
{
Console.WriteLine($" - {param.Name}: {param.Description} ({param.Type})");
}
}
Console.WriteLine();
}
// 保持程序运行,等待用户输入
Console.WriteLine("Press Enter to exit...");
Console.ReadLine();
}
private static (string, string) GetCommandAndArguments(string[] args)
{
// 解析命令行参数的逻辑
// ...
// 示例返回值
return ("dotnet", "run --project ../BasicMcpServer/BasicMcpServer.csproj");
}
}
}
这个示例展示了如何创建一个基本的 MCP 客户端,连接到 MCP 服务器,并列出可用的工具及其参数。
工具发现与调用
以下是一个展示如何发现和调用 MCP 工具的示例:
// 连接到 MCP 服务器
await using var mcpClient = await McpClientFactory.CreateAsync(new()
{
Id = "demo-server",
Name = "Demo Server",
TransportType = TransportTypes.StdIo,
TransportOptions = new()
{
["command"] = command,
["arguments"] = arguments,
}
});
// 列出可用工具
var tools = await mcpClient.ListToolsAsync();
Console.WriteLine($"Found {tools.Count} tools:");
foreach (var tool in tools)
{
Console.WriteLine($"- {tool.Name}");
}
// 调用 Echo 工具
Console.WriteLine("\nCalling Echo tool...");
var echoResult = await mcpClient.CallToolAsync(
"echo",
new Dictionary() { ["message"] = "Hello MCP!" },
CancellationToken.None);
Console.WriteLine($"Echo result: {echoResult.Content.First(c => c.Type == "text").Text}");
// 调用 Add 工具
Console.WriteLine("\nCalling Add tool...");
var addResult = await mcpClient.CallToolAsync(
"add",
new Dictionary()
{
["a"] = 5,
["b"] = 7
},
CancellationToken.None);
Console.WriteLine($"Add result: {addResult.Content.First(c => c.Type == "text").Text}");
// 调用 GetDateTime 工具
Console.WriteLine("\nCalling GetDateTime tool...");
var dateTimeResult = await mcpClient.CallToolAsync(
"getDateTime",
new Dictionary(),
CancellationToken.None);
Console.WriteLine($"DateTime result: {dateTimeResult.Content.First(c => c.Type == "text").Text}");
这个示例展示了如何列出可用的 MCP 工具,并调用不同类型的工具,包括带参数和不带参数的工具。
错误处理
以下是一个展示如何处理 MCP 工具调用错误的示例:
try
{
// 尝试调用不存在的工具
var result = await mcpClient.CallToolAsync(
"nonExistentTool",
new Dictionary(),
CancellationToken.None);
}
catch (McpException ex)
{
Console.WriteLine($"MCP Error: {ex.Message}");
Console.WriteLine($"Error Code: {ex.Code}");
Console.WriteLine($"Error Data: {ex.Data}");
}
try
{
// 尝试调用工具但缺少必要参数
var result = await mcpClient.CallToolAsync(
"echo",
new Dictionary(), // 缺少 message 参数
CancellationToken.None);
}
catch (McpException ex)
{
Console.WriteLine($"MCP Error: {ex.Message}");
}
try
{
// 尝试调用工具但参数类型错误
var result = await mcpClient.CallToolAsync(
"add",
new Dictionary()
{
["a"] = "not a number",
["b"] = 7
},
CancellationToken.None);
}
catch (McpException ex)
{
Console.WriteLine($"MCP Error: {ex.Message}");
}
这个示例展示了如何处理 MCP 工具调用中可能出现的各种错误,包括调用不存在的工具、缺少必要参数和参数类型错误。
LLM 集成示例
Claude 集成
以下是一个将 MCP 工具与 Claude 模型集成的示例:
using Anthropic.SDK;
using Microsoft.Extensions.AI;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using ModelContextProtocol.Client;
using ModelContextProtocol.Protocol.Transport;
var builder = Host.CreateApplicationBuilder(args);
builder.Configuration
.AddEnvironmentVariables()
.AddUserSecrets();
// 创建 MCP 客户端
var (command, arguments) = GetCommandAndArguments(args);
await using var mcpClient = await McpClientFactory.CreateAsync(new()
{
Id = "demo-server",
Name = "Demo Server",
TransportType = TransportTypes.StdIo,
TransportOptions = new()
{
["command"] = command,
["arguments"] = arguments,
}
});
// 获取可用工具
var tools = await mcpClient.ListToolsAsync();
Console.WriteLine($"Connected to server with {tools.Count} tools");
// 创建 Claude 客户端
var anthropicClient = new AnthropicClient(new APIAuthentication(builder.Configuration["ANTHROPIC_API_KEY"]))
.Messages
.AsBuilder()
.UseFunctionInvocation()
.Build();
// 配置聊天选项
var options = new ChatOptions
{
MaxOutputTokens = 1000,
ModelId = "claude-3-5-sonnet-20240229",
Tools = [.. tools]
};
Console.WriteLine("Chat with Claude (type 'exit' to quit):");
while (true)
{
Console.Write("> ");
var query = Console.ReadLine();
if (string.IsNullOrWhiteSpace(query) || query.Equals("exit", StringComparison.OrdinalIgnoreCase))
{
break;
}
// 使用 Claude 处理查询
await foreach (var message in anthropicClient.GetStreamingResponseAsync(query, options))
{
Console.Write(message);
}
Console.WriteLine("\n");
}
这个示例展示了如何创建一个聊天应用,将 MCP 工具与 Claude 模型集成,使用户能够通过自然语言与 Claude 交互,而 Claude 能够使用 MCP 工具来完成任务。
OpenAI 集成
以下是一个将 MCP 工具与 OpenAI 模型集成的示例:
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using ModelContextProtocol.Client;
using ModelContextProtocol.Protocol.Transport;
using OpenAI_API;
using OpenAI_API.Chat;
using System.Text.Json;
var builder = Host.CreateApplicationBuilder(args);
builder.Configuration
.AddEnvironmentVariables()
.AddUserSecrets();
// 创建 MCP 客户端
var (command, arguments) = GetCommandAndArguments(args);
await using var mcpClient = await McpClientFactory.CreateAsync(new()
{
Id = "demo-server",
Name = "Demo Server",
TransportType = TransportTypes.StdIo,
TransportOptions = new()
{
["command"] = command,
["arguments"] = arguments,
}
});
// 获取可用工具
var tools = await mcpClient.ListToolsAsync();
Console.WriteLine($"Connected to server with {tools.Count} tools");
// 创建 OpenAI 客户端
var openAiApi = new OpenAIAPI(builder.Configuration["OPENAI_API_KEY"]);
// 转换 MCP 工具为 OpenAI 工具格式
var openAiTools = tools.Select(tool => new OpenAI_API.Tool
{
Type = "function",
Function = new OpenAI_API.Function
{
Name = tool.Name,
Description = tool.Description,
Parameters = new
{
Type = "object",
Properties = tool.Parameters?.ToDictionary(
p => p.Name,
p => new
{
Type = ConvertToJsonSchemaType(p.Type),
Description = p.Description
}
) ?? new Dictionary(),
Required = tool.Parameters?.Where(p => p.Required).Select(p => p.Name).ToArray() ?? Array.Empty()
}
}
}).ToList();
// 创建聊天会话
var chat = openAiApi.Chat.CreateConversation();
chat.Model = "gpt-4o";
chat.RequestParameters.Tools = openAiTools;
Console.WriteLine("Chat with GPT (type 'exit' to quit):");
while (true)
{
Console.Write("> ");
var query = Console.ReadLine();
if (string.IsNullOrWhiteSpace(query) || query.Equals("exit", StringComparison.OrdinalIgnoreCase))
{
break;
}
// 添加用户消息
chat.AppendUserInput(query);
// 获取 GPT 响应
var response = await chat.GetResponseFromChatbotAsync();
Console.WriteLine(response);
// 处理工具调用
if (chat.ResponseParameters.ToolCalls?.Any() == true)
{
foreach (var toolCall in chat.ResponseParameters.ToolCalls)
{
if (toolCall.Type == "function")
{
Console.WriteLine($"\nCalling tool: {toolCall.Function.Name}");
// 解析参数
var parameters = JsonSerializer.Deserialize>(
toolCall.Function.Arguments);
// 调用 MCP 工具
var result = await mcpClient.CallToolAsync(
toolCall.Function.Name,
parameters,
CancellationToken.None);
var resultText = result.Content.First(c => c.Type == "text").Text;
Console.WriteLine($"Tool result: {resultText}");
// 将工具结果添加到对话
chat.AppendToolResult(resultText, toolCall.Id);
}
}
// 获取 GPT 对工具结果的响应
var finalResponse = await chat.GetResponseFromChatbotAsync();
Console.WriteLine($"\nFinal response: {finalResponse}");
}
Console.WriteLine("\n");
}
// 辅助方法:将 MCP 类型转换为 JSON Schema 类型
string ConvertToJsonSchemaType(string mcpType)
{
return mcpType.ToLower() switch
{
"string" => "string",
"integer" => "integer",
"number" => "number",
"boolean" => "boolean",
"array" => "array",
"object" => "object",
_ => "string"
};
}
这个示例展示了如何创建一个聊天应用,将 MCP 工具与 OpenAI 的 GPT 模型集成,使用户能够通过自然语言与 GPT 交互,而 GPT 能够使用 MCP 工具来完成任务。
Semantic Kernel 集成
以下是一个将 MCP 工具与 Microsoft Semantic Kernel 集成的示例:
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.SemanticKernel;
using ModelContextProtocol.Client;
using ModelContextProtocol.Protocol.Transport;
var builder = Host.CreateApplicationBuilder(args);
builder.Configuration
.AddEnvironmentVariables()
.AddUserSecrets();
// 创建 MCP 客户端
var (command, arguments) = GetCommandAndArguments(args);
await using var mcpClient = await McpClientFactory.CreateAsync(new()
{
Id = "demo-server",
Name = "Demo Server",
TransportType = TransportTypes.StdIo,
TransportOptions = new()
{
["command"] = command,
["arguments"] = arguments,
}
});
// 获取可用工具
var tools = await mcpClient.ListToolsAsync();
Console.WriteLine($"Connected to server with {tools.Count} tools");
// 创建 Semantic Kernel
var kernel = Kernel.CreateBuilder()
.AddAzureOpenAIChatCompletion(
deploymentName: builder.Configuration["AZURE_OPENAI_DEPLOYMENT_NAME"],
endpoint: builder.Configuration["AZURE_OPENAI_ENDPOINT"],
apiKey: builder.Configuration["AZURE_OPENAI_API_KEY"])
.Build();
// 注册 MCP 工具为 Semantic Kernel 函数
foreach (var tool in tools)
{
kernel.ImportPluginFromObject(new McpToolWrapper(mcpClient, tool), tool.Name);
}
// 创建聊天历史
var chatHistory = new ChatHistory();
Console.WriteLine("Chat with Semantic Kernel (type 'exit' to quit):");
while (true)
{
Console.Write("> ");
var query = Console.ReadLine();
if (string.IsNullOrWhiteSpace(query) || query.Equals("exit", StringComparison.OrdinalIgnoreCase))
{
break;
}
// 添加用户消息到聊天历史
chatHistory.AddUserMessage(query);
// 获取 AI 响应
var response = await kernel.InvokePromptAsync(chatHistory.ToString());
Console.WriteLine(response);
// 添加 AI 响应到聊天历史
chatHistory.AddAssistantMessage(response);
Console.WriteLine("\n");
}
// MCP 工具包装类
public class McpToolWrapper
{
private readonly IMcpClient _mcpClient;
private readonly McpTool _tool;
public McpToolWrapper(IMcpClient mcpClient, McpTool tool)
{
_mcpClient = mcpClient;
_tool = tool;
}
[KernelFunction]
public async Task ExecuteAsync(Dictionary parameters)
{
var result = await _mcpClient.CallToolAsync(
_tool.Name,
parameters,
CancellationToken.None);
return result.Content.First(c => c.Type == "text").Text;
}
}
这个示例展示了如何创建一个聊天应用,将 MCP 工具与 Microsoft Semantic Kernel 集成,使用户能够通过自然语言与 AI 交互,而 AI 能够使用 MCP 工具来完成任务。
应用场景
文档分析
以下是一个使用 MCP 工具进行文档分析的示例:
[McpServerToolType]
public static class DocumentTools
{
[McpServerTool, Description("Analyzes a document and extracts key information.")]
public static async Task AnalyzeDocument(
HttpClient httpClient,
[Description("URL of the document to analyze")] string documentUrl,
[Description("Type of analysis to perform (summary, entities, sentiment)")] string analysisType = "summary",
CancellationToken cancellationToken = default)
{
try
{
// 下载文档
var response = await httpClient.GetAsync(documentUrl, cancellationToken);
response.EnsureSuccessStatusCode();
var content = await response.Content.ReadAsStringAsync(cancellationToken);
// 根据分析类型执行不同的分析
return analysisType.ToLower() switch
{
"summary" => await GenerateSummary(content, cancellationToken),
"entities" => await ExtractEntities(content, cancellationToken),
"sentiment" => await AnalyzeSentiment(content, cancellationToken),
_ => throw new ArgumentException($"Unsupported analysis type: {analysisType}")
};
}
catch (Exception ex)
{
return $"Error analyzing document: {ex.Message}";
}
}
private static async Task GenerateSummary(string content, CancellationToken cancellationToken)
{
// 实现文档摘要生成逻辑
// 这里可以使用 NLP 库或调用外部 API
// 示例实现
var summary = $"Document summary (length: {content.Length} characters):\n";
summary += "This is a placeholder for the actual document summary.";
return summary;
}
private static async Task ExtractEntities(string content, CancellationToken cancellationToken)
{
// 实现实体提取逻辑
// 这里可以使用 NLP 库或调用外部 API
// 示例实现
var entities = "Extracted entities:\n";
entities += "- Entity 1 (Person)\n";
entities += "- Entity 2 (Organization)\n";
entities += "- Entity 3 (Location)";
return entities;
}
private static async Task AnalyzeSentiment(string content, CancellationToken cancellationToken)
{
// 实现情感分析逻辑
// 这里可以使用 NLP 库或调用外部 API
// 示例实现
var sentiment = "Sentiment analysis:\n";
sentiment += "- Overall sentiment: Positive\n";
sentiment += "- Confidence score: 0.85\n";
sentiment += "- Key positive phrases: [...]\n";
sentiment += "- Key negative phrases: [...]";
return sentiment;
}
}
这个示例展示了如何实现文档分析工具,包括生成摘要、提取实体和分析情感。这些工具可以帮助 AI 模型分析和理解文档内容。
数据处理
以下是一个使用 MCP 工具进行数据处理的示例:
[McpServerToolType]
public static class DataProcessingTools
{
[McpServerTool, Description("Processes CSV data and performs analysis.")]
public static async Task ProcessCsvData(
[Description("URL of the CSV file to process")] string csvUrl,
[Description("Type of analysis to perform (stats, filter, transform)")] string analysisType = "stats",
[Description("Additional parameters for the analysis (e.g., filter criteria)")] string parameters = "",
CancellationToken cancellationToken = default)
{
try
{
// 下载 CSV 文件
using var httpClient = new HttpClient();
var response = await httpClient.GetAsync(csvUrl, cancellationToken);
response.EnsureSuccessStatusCode();
var csvContent = await response.Content.ReadAsStringAsync(cancellationToken);
// 解析 CSV 数据
var data = ParseCsv(csvContent);
// 根据分析类型执行不同的处理
return analysisType.ToLower() switch
{
"stats" => CalculateStatistics(data),
"filter" => FilterData(data, parameters),
"transform" => TransformData(data, parameters),
_ => throw new ArgumentException($"Unsupported analysis type: {analysisType}")
};
}
catch (Exception ex)
{
return $"Error processing CSV data: {ex.Message}";
}
}
private static List> ParseCsv(string csvContent)
{
var result = new List>();
var lines = csvContent.Split('\n');
if (lines.Length < 2)
{
return result;
}
var headers = lines[0].Split(',').Select(h => h.Trim()).ToArray();
for (int i = 1; i < lines.Length; i++)
{
var line = lines[i].Trim();
if (string.IsNullOrEmpty(line))
{
continue;
}
var values = line.Split(',').Select(v => v.Trim()).ToArray();
var row = new Dictionary();
for (int j = 0; j < Math.Min(headers.Length, values.Length); j++)
{
row[headers[j]] = values[j];
}
result.Add(row);
}
return result;
}
private static string CalculateStatistics(List> data)
{
if (data.Count == 0)
{
return "No data to analyze.";
}
var result = "Data Statistics:\n";
result += $"- Row count: {data.Count}\n";
result += $"- Column count: {data[0].Count}\n";
result += "- Columns: " + string.Join(", ", data[0].Keys);
return result;
}
private static string FilterData(List> data, string parameters)
{
// 解析过滤参数
// 格式:column=value
var filterParams = parameters.Split('=');
if (filterParams.Length != 2)
{
return "Invalid filter parameters. Format should be 'column=value'.";
}
var column = filterParams[0].Trim();
var value = filterParams[1].Trim();
// 应用过滤
var filteredData = data.Where(row => row.ContainsKey(column) && row[column] == value).ToList();
var result = $"Filtered data (where {column} = {value}):\n";
result += $"- Matching rows: {filteredData.Count}\n\n";
// 显示前 5 行
for (int i = 0; i < Math.Min(5, filteredData.Count); i++)
{
result += $"Row {i + 1}:\n";
foreach (var kvp in filteredData[i])
{
result += $" {kvp.Key}: {kvp.Value}\n";
}
result += "\n";
}
return result;
}
private static string TransformData(List> data, string parameters)
{
// 解析转换参数
// 格式:operation:column
var transformParams = parameters.Split(':');
if (transformParams.Length != 2)
{
return "Invalid transform parameters. Format should be 'operation:column'.";
}
var operation = transformParams[0].Trim().ToLower();
var column = transformParams[1].Trim();
// 检查列是否存在
if (data.Count > 0 && !data[0].ContainsKey(column))
{
return $"Column '{column}' not found in data.";
}
// 应用转换
var result = $"Transformed data ({operation} on {column}):\n\n";
switch (operation)
{
case "uppercase":
foreach (var row in data)
{
if (row.ContainsKey(column))
{
row[column] = row[column].ToUpper();
}
}
break;
case "lowercase":
foreach (var row in data)
{
if (row.ContainsKey(column))
{
row[column] = row[column].ToLower();
}
}
break;
default:
return $"Unsupported operation: {operation}";
}
// 显示前 5 行
for (int i = 0; i < Math.Min(5, data.Count); i++)
{
result += $"Row {i + 1}:\n";
foreach (var kvp in data[i])
{
result += $" {kvp.Key}: {kvp.Value}\n";
}
result += "\n";
}
return result;
}
}
这个示例展示了如何实现数据处理工具,包括计算统计信息、过滤数据和转换数据。这些工具可以帮助 AI 模型处理和分析结构化数据。
代码生成
以下是一个使用 MCP 工具进行代码生成的示例:
[McpServerToolType]
public static class CodeGenerationTools
{
[McpServerTool, Description("Generates code based on a description.")]
public static string GenerateCode(
[Description("Description of the code to generate")] string description,
[Description("Programming language (csharp, python, javascript)")] string language = "csharp",
[Description("Additional options (e.g., framework, style)")] string options = "")
{
// 根据语言选择代码生成模板
var codeTemplate = language.ToLower() switch
{
"csharp" => GenerateCSharpCode(description, options),
"python" => GeneratePythonCode(description, options),
"javascript" => GenerateJavaScriptCode(description, options),
_ => throw new ArgumentException($"Unsupported language: {language}")
};
return codeTemplate;
}
private static string GenerateCSharpCode(string description, string options)
{
// 这里应该实现实际的代码生成逻辑
// 可以使用模板、规则或调用外部 API
// 示例实现:生成一个简单的 C# 类
var className = GetClassName(description);
var code = $@"// Generated C# code based on: {description}
using System;
using System.Threading.Tasks;
namespace GeneratedCode
{{
public class {className}
{{
public {className}()
{{
// Constructor
}}
public void Execute()
{{
Console.WriteLine(""Executing {className}..."");
// TODO: Implement based on description
// {description}
}}
public async Task ExecuteAsync()
{{
Console.WriteLine(""Executing {className} asynchronously..."");
// TODO: Implement based on description
// {description}
await Task.CompletedTask;
}}
}}
}}";
return code;
}
private static string GeneratePythonCode(string description, string options)
{
// 示例实现:生成一个简单的 Python 类
var className = GetClassName(description);
var code = $@"# Generated Python code based on: {description}
import asyncio
class {className}:
def __init__(self):
# Constructor
pass
def execute(self):
print(f'Executing {className}...')
# TODO: Implement based on description
# {description}
async def execute_async(self):
print(f'Executing {className} asynchronously...')
# TODO: Implement based on description
# {description}
await asyncio.sleep(0)
# Usage example
if __name__ == '__main__':
obj = {className}()
obj.execute()
# Async usage
# asyncio.run(obj.execute_async())";
return code;
}
private static string GenerateJavaScriptCode(string description, string options)
{
// 示例实现:生成一个简单的 JavaScript 类
var className = GetClassName(description);
var code = $@"// Generated JavaScript code based on: {description}
class {className} {{
constructor() {{
// Constructor
}}
execute() {{
console.log('Executing {className}...');
// TODO: Implement based on description
// {description}
}}
async executeAsync() {{
console.log('Executing {className} asynchronously...');
// TODO: Implement based on description
// {description}
await Promise.resolve();
}}
}}
// Usage example
const obj = new {className}();
obj.execute();
// Async usage
// obj.executeAsync().then(() => console.log('Done'));";
return code;
}
private static string GetClassName(string description)
{
// 从描述中提取类名
// 这里使用一个简单的启发式方法
var words = description.Split(' ')
.Where(w => !string.IsNullOrEmpty(w))
.Select(w => char.ToUpper(w[0]) + w.Substring(1).ToLower())
.ToArray();
return string.Join("", words).Replace(".", "").Replace(",", "");
}
}
这个示例展示了如何实现代码生成工具,可以根据描述生成不同编程语言的代码。这些工具可以帮助 AI 模型生成可执行的代码示例。
自动化任务
以下是一个使用 MCP 工具进行自动化任务的示例:
[McpServerToolType]
public class AutomationTools
{
private readonly ILogger _logger;
public AutomationTools(ILogger logger)
{
_logger = logger;
}
[McpServerTool, Description("Schedules a task to run at a specified time.")]
public string ScheduleTask(
[Description("Description of the task to schedule")] string taskDescription,
[Description("When to run the task (format: yyyy-MM-dd HH:mm:ss)")] string scheduledTime,
[Description("Whether to repeat the task daily")] bool repeatDaily = false)
{
try
{
// 解析时间
if (!DateTime.TryParse(scheduledTime, out var scheduleDateTime))
{
return $"Invalid date/time format: {scheduledTime}. Please use yyyy-MM-dd HH:mm:ss format.";
}
// 检查时间是否在未来
if (scheduleDateTime <= DateTime.Now)
{
return "Scheduled time must be in the future.";
}
// 记录任务信息
_logger.LogInformation($"Task scheduled: {taskDescription}");
_logger.LogInformation($"Scheduled time: {scheduleDateTime}");
_logger.LogInformation($"Repeat daily: {repeatDaily}");
// 在实际应用中,这里应该将任务添加到调度系统
// 例如使用 Quartz.NET 或其他任务调度库
return $"Task scheduled successfully:\n" +
$"- Description: {taskDescription}\n" +
$"- Scheduled time: {scheduleDateTime}\n" +
$"- Repeat daily: {repeatDaily}";
}
catch (Exception ex)
{
_logger.LogError(ex, "Error scheduling task");
return $"Error scheduling task: {ex.Message}";
}
}
[McpServerTool, Description("Runs a command on the server.")]
public async Task RunCommand(
[Description("Command to run")] string command,
[Description("Working directory for the command")] string workingDirectory = "",
[Description("Timeout in seconds (0 for no timeout)")] int timeoutSeconds = 60,
CancellationToken cancellationToken = default)
{
try
{
_logger.LogInformation($"Running command: {command}");
// 设置工作目录
var workDir = string.IsNullOrEmpty(workingDirectory)
? Directory.GetCurrentDirectory()
: workingDirectory;
// 检查工作目录是否存在
if (!Directory.Exists(workDir))
{
return $"Working directory does not exist: {workDir}";
}
// 创建进程启动信息
var processStartInfo = new ProcessStartInfo
{
FileName = "cmd.exe",
Arguments = $"/c {command}",
WorkingDirectory = workDir,
RedirectStandardOutput = true,
RedirectStandardError = true,
UseShellExecute = false,
CreateNoWindow = true
};
// 启动进程
using var process = new Process { StartInfo = processStartInfo };
process.Start();
// 设置超时
var timeoutTask = timeoutSeconds > 0
? Task.Delay(timeoutSeconds * 1000, cancellationToken)
: Task.Delay(-1, cancellationToken);
// 读取输出
var outputTask = process.StandardOutput.ReadToEndAsync();
var errorTask = process.StandardError.ReadToEndAsync();
// 等待进程完成或超时
var completedTask = await Task.WhenAny(
Task.Run(() => process.WaitForExit(), cancellationToken),
timeoutTask);
// 检查是否超时
if (completedTask == timeoutTask && !process.HasExited)
{
process.Kill();
return $"Command timed out after {timeoutSeconds} seconds.";
}
// 获取输出
var output = await outputTask;
var error = await errorTask;
// 返回结果
return string.IsNullOrEmpty(error)
? $"Command executed successfully:\n{output}"
: $"Command executed with errors:\n{error}\n\nOutput:\n{output}";
}
catch (Exception ex)
{
_logger.LogError(ex, "Error running command");
return $"Error running command: {ex.Message}";
}
}
[McpServerTool, Description("Monitors a file or directory for changes.")]
public string MonitorFileChanges(
[Description("Path to file or directory to monitor")] string path,
[Description("Types of changes to monitor (Created, Deleted, Changed, Renamed)")] string changeTypes = "Created,Deleted,Changed,Renamed",
[Description("Whether to include subdirectories")] bool includeSubdirectories = true)
{
try
{
// 检查路径是否存在
if (!File.Exists(path) && !Directory.Exists(path))
{
return $"Path does not exist: {path}";
}
// 解析变更类型
var watcherChangeTypes = ParseChangeTypes(changeTypes);
// 创建文件系统监视器
var watcher = new FileSystemWatcher
{
Path = Directory.Exists(path) ? path : Path.GetDirectoryName(path),
Filter = Directory.Exists(path) ? "*.*" : Path.GetFileName(path),
NotifyFilter = NotifyFilters.LastWrite | NotifyFilters.FileName | NotifyFilters.DirectoryName,
IncludeSubdirectories = includeSubdirectories
};
// 设置事件处理程序
watcher.Changed += (sender, e) => _logger.LogInformation($"File changed: {e.FullPath}");
watcher.Created += (sender, e) => _logger.LogInformation($"File created: {e.FullPath}");
watcher.Deleted += (sender, e) => _logger.LogInformation($"File deleted: {e.FullPath}");
watcher.Renamed += (sender, e) => _logger.LogInformation($"File renamed: {e.OldFullPath} to {e.FullPath}");
// 启动监视器
watcher.EnableRaisingEvents = true;
// 在实际应用中,应该将监视器存储在某个地方,以便以后可以停止它
return $"File monitoring started:\n" +
$"- Path: {path}\n" +
$"- Change types: {changeTypes}\n" +
$"- Include subdirectories: {includeSubdirectories}";
}
catch (Exception ex)
{
_logger.LogError(ex, "Error monitoring file changes");
return $"Error monitoring file changes: {ex.Message}";
}
}
private static NotifyFilters ParseChangeTypes(string changeTypes)
{
var result = NotifyFilters.LastWrite;
foreach (var type in changeTypes.Split(',').Select(t => t.Trim()))
{
result |= type.ToLower() switch
{
"created" => NotifyFilters.FileName | NotifyFilters.DirectoryName,
"deleted" => NotifyFilters.FileName | NotifyFilters.DirectoryName,
"changed" => NotifyFilters.LastWrite,
"renamed" => NotifyFilters.FileName | NotifyFilters.DirectoryName,
_ => NotifyFilters.LastWrite
};
}
return result;
}
}
这个示例展示了如何实现自动化任务工具,包括调度任务、运行命令和监控文件变更。这些工具可以帮助 AI 模型自动化各种系统任务。
结论
本文档提供了丰富的 .NET MCP 示例,涵盖了服务器端实现、客户端实现、LLM 集成和各种应用场景。这些示例可以帮助开发者快速上手 MCP,并将其应用到实际项目中。
MCP 的强大之处在于它提供了一种标准化的方式,使 AI 模型能够安全地访问和操作各种数据源和工具。通过实现 MCP 服务器和客户端,开发者可以创建功能丰富的 AI 应用,使 AI 能够执行各种任务,从简单的文本处理到复杂的自动化操作。
随着 MCP 生态系统的不断发展,我们可以期待更多的功能和改进。官方的 C# SDK 提供了一个稳定的基础,使 .NET 开发者能够轻松地实现 MCP 服务器和客户端。